Adapting VPIC to Roadrunner

Ben Bergen
Computational Physics Group (CCS-2)
Computer, Computational, and Statistical
Sciences Division (CCS)

Brian Albright (X-1), Kevin Bowers (D.E. Shaw Research), Yin Lin (X-1)

LA-UR-08-2672

VPIC

❖ 3D, fully relativistic, electromagnetic Particle-In-Cell (PIC) code

Self-consistent evolution of a kinetic plasma

Optimized for data motion

- Single precision half the memory bandwidth/double the theoretical peak
- Single-pass particle processing
- Field interpolation coefficients are pre-computed

Optimized for modern architectures

- Uses short-vector, SIMD intrinsics (SSE, Altivec, SPU)
 - Assumes that particles do not leave voxel in which they started
 - Exceptions are handled separately
- O(N) particle sorting
 - Improves spatial locality of particle data
 - Improves temporal locality of Field data

Particle-In-Cell method

Time Iteration

Spatial Domain

LA-UR-08-2672

PIC Methods Simulate Plasma Physics

- One application of VPIC is to simulate Laser Plasma Interactions (LPI) critical to understanding Inertial Confinement Fusion (ICF) at the National Ignition Facility (NIF)
- Several difficulties arise during the compression of hohlraum capsules
 - Laser scattering not enough energy to compress capsule
 - Laser scattering laser does not target desired areas (non-symmetric compression)
 - Pre-heating electrons heat plasma making compression more difficult

Porting to Roadrunner (things that we did)

Message Passing Relay (MP Relay)

- Flattens communication topology
- Allows logical point-to-point communication between Cell processors

Pipelined execution

- Code restructured for data parallel thread execution
- Current support for serial, pthreads, and SPE threads

Particle data structures

"Tweaked" for efficient communication via DMA requests

Voxel cache (access to Field data)

- Fully associative least recently used (LRU) policy
- Simple interface: voxel_cache_fetch() and voxel_cache_wait()

Text overlay support

Partial implementation in place

Things that I'm actually going to talk about...

Message Passing Relay (MP Relay)

- Overview
- iSend example

Data structures

- Worst-to-best principles for memory access on the IBM Cell
- VPIC particle advance: particle layout and processing strategies
- Performance sorting particles

Overlays

- What are they?
- How do they work?

Performance

- Measured performance on ASDS
- Modeled performance to 18 CUs

Accelerator-centric Programming Model

MPI traffic relayed through host

000

- Hides hybrid complexity
 - Single underlying implementation supports multiple architectures
- Avoids data movement bottleneck over PCI-e communication path

Cons

- Requires full port to Cell
- Potential PPE bottleneck

MP Relay: message relay layer

MP Relay Example: iSend

main send Cell

2

main	
Cell	

main	receive
Cell	

LA-UR-08-2672

main	receive
Cell	

LA-UR-08-2672

main	receive
Cell	

LA-UR-08-2672

main	receive
Cell	

LA-UR-08-2672

main Cell

main	receive
Cell	

main	receive
Cell	

LA-UR-08-2672

NNS W

LA-UR-08-2672

MP Relay Example: Step-by-step


```
void MPRelay::start()
              P2PConnection & p2p = P2PConnection::instance();
              DMPConnection & dmp = DMPConnection::instance();
              bool relay(true);
              MPRequest_T<MP_HOST> request;
              while(relay) {
                             switch(p2p.poll(request)) {
                                            // ...
                                            case P2PTag::end:
                                                           relay = false;
                                                           break:
                                            // ...
                             } // switch
              } // while
     } // MPRelay::start
```



```
template<> inline int P2PPolicyDACS<MP HOST>::poll(MPRequest T<MP HOST> & request)
     ConnectionManager & mgr = ConnectionManager::instance();
     if(pending_) {
              // test for message completion
              errcode = dacs test(request wid );
              switch(errcode ) {
                            case DACS WID READY:
                                         pending = false;
                                         return request.p2ptag;
                            case DACS WID BUSY:
                                         return P2PTag::pending;
                            default:
                                         process dacs errcode(errcode, FILE, LINE);
              } // switch
     else {
              // initiate new recv operation for next request
              errcode = dacs recv(&request, request count(),
                            mgr.peer de(), mgr.peer pid(), P2PTag::request,
                            request_wid_, DACS_BYTE_SWAP_WORD);
              process dacs errcode(errcode, FILE, LINE);
              pending_ = true;
              return P2PTag::pending;
     } // if
} // P2PPolicyDACS::poll
```


LA-UR-08-2672

LA-UR-08-2672

```
template<> inline
int P2PPolicyDaCS<MP ACCEL>::post(MPRequest T<MP ACCEL> & request)
        ConnectionManager & mgr = ConnectionManager::instance();
        errcode_ = dacs_send(&request, request_count(),
                mgr.peer_de(), mgr.peer_pid(), P2PTag::request,
                request wid , DACS BYTE SWAP WORD);
        process dacs errocode(errcode, FILE, LINE);
        errcode_ = dacs_wait(request_wid_);
        process_dacs_errocode(errcode_, FILE , LINE );
        return interpret_error(errcode_);
   } // P2PPolicyDaCS<>::post
```


main	receive
Cell	

LA-UR-08-2672

main	receive
Cell	

LA-UR-08-2672

```
template<int ROLE>
template<typename T>
int P2PPolicyDaCS<ROLE>::isend(T * buffer, int count, int tag, int id)
         ConnectionManager & mgr = ConnectionManager::instance();
         errcode_ = dacs_send(buffer, count*sizeof(T),
                  mgr.peer_de(), mgr.peer_pid(), tag, send_wid_[id],
                  Type2DaCSSwapType<T>::type());
         process_dacs_errocode(errcode_, __FILE__ , __LINE__ );
         return interpret_error(errcode_);
   } // P2PPolicyDaCS<>::isend
```


main	receive
Cell	

main	receive
Cell	

LA-UR-08-2672

main
Cell


```
// ...
while(relay) {
               switch(p2p.poll(request)) {
                              // ...
                              case P2PTag::isend:
                                             // resize buffer if necessary
                                              cbuf_send_[request.id].resize(request.count);
                                              // save request header
                                              dmp send request [request.id] = request;
                                              // blocking receive from point-to-point peer
                                              p2p.recv(cbuf_send_[request.id].data(), request.count,
                                                             request.tag, request.id);
                                              // non-blocking send to dmp peer
                                              dmp.isend(cbuf_send_[request.id].data(), request.count,
                                                             request.peer, request.tag, request.id);
                                              // keep track of pending sends
                                              dmp_send_request_[request.id].state = pending;
                                              pending_dmp_send_.push_back(request.id);
                              break:
                              // ...
               } // switch
} // while
// ...
```


main	receive
Cell	

LA-UR-08-2672

main	receive
Cell	

LA-UR-08-2672


```
// ...
while(relay) {
               switch(p2p.poll(request)) {
                              // ...
                              case P2PTag::irecv:
                                              // resize buffer if necessary
                                              cbuf_recv_[request.id].resize(request.count);
                                              // save request header
                                              dmp_recv_request_[request.id] = request;
                                              // non-blocking receive from dmp peer
                                              dmp.irecv(cbuf_recv_[request.id].data(), request.count,
                                                             request.peer, request.tag, request.id);
                                              // keep track of pending receives
                                              dmp_recv_request_[request.id].state = pending;
                                              pending_dmp_recv_.push_back(request.id);
                              break:
                              // ...
               } // switch
} // while
// ...
```


LA-UR-08-2672

```
template<int ROLE>
template<typename T>
int P2PPolicyDaCS<ROLE>::irecv(T * buffer, int count, int tag, int id)
         ConnectionManager & mgr = ConnectionManager::instance();
         errcode_ = dacs_recv(buffer, count*sizeof(T),
                  mgr.peer_de(), mgr.peer_pid(), tag, recv_wid_[id],
                  Type2DaCSSwapType<T>::type());
         process_dacs_errocode(errcode_, __FILE__ , __LINE__ );
         recv_count_[id] = count;
         return interpret_error(errcode_);
   } // P2PPolicyDaCS<>::isend
```


Data Structures for Efficient Memory Access on the IBM Cell Processor

Worst strategy is random access of un-aligned data

LA-UR-08-2672

Better strategy is random access of quadwordaligned data

Even better strategy is *ordered* access of quadword-aligned data

Best strategy uses "cache line"-aligned data access in "cache line" increments

VPIC applies best strategy to particle advance

❖ Data are processed in segments of even multiples of 16 particles

- Segments are accessed in blocks of up to 512 particles
 (16 KB → largest possible single DMA request)
- Triple-buffered: streaming data paradigm (read, update, write)

Block processing groups particles in sets of 4

- Optimal for single-precision SIMD operations
- Inner loop is 4x hand unrolled

LA-UR-08-2672

Performance Sorting

Contiguous Memory

Compute Grid

Naïve initial particle distribution by voxel places particle data spatially "close" in memory

Contiguous Memory

Compute Grid

Advancing particles potentially moves them into new voxels

Contiguous Memory

Compute Grid

New particle positions interleave memory access with respect to voxels

Contiguous Memory

Compute Grid

After several time iterations, particle data has lost spatial locality

Contiguous Memory

Compute Grid

Loss of spatial locality in data access impacts temporal access of field data and hurts performance

Contiguous Memory

Compute Grid

Numbering indicates original indeces

Sorting particle data by voxel restores spatial/temporal locality

Optimal Sorting Frequency: Five Species

Overlays

Overlays

- VPIC's particle advance logic maxes out the Local Store (LS)
 - Particle advance data uses 206 KB
 - This leaves ~50 KB for text (machine instructions)
- Overlays are segments of text that can be loaded/unloaded from LS
 - Expand the effective maximum size of an SPE program
 - Avoid overhead of starting new SPE threads (prohibitive)
 - Limited by main memory and (more so) management table size
- VPIC has been extended to support overlays
 - Allows acceleration of particle sorting and Field solve
 - Current version uses custom linker script (defines regions and segments)
 - IBM is adding compiler support for automatic segmentation

SPE Local Store

Root Segment Region 1 SA Region 2 SD Data

Main Memory

Text is partitioned into *regions* with a static root segment

Each region can be filled by specific segments of text

The size of a region is determined by its largest segment

LA-UR-08-2672

Data is not persistent across segments within a region

Loading a new segment overwrites its respective region

Root segment data is persistent for the scope of the SPE executable

LA-UR-08-2672

SPE Local Store

Main Memory

Remaining Local Store data is unaffected by swapping segments

LA-UR-08-2672

Performance Measured (ASDS) Modeled (PAL)

Measured Performance on ASDS

Cores	Opteron Gflop/s	Cell eDP Gflop/s	Performance Advantage
1	2.5	31.0 (15% peak)	12.4x
4	2.5	30.0	12.0x
8	2.5	28.9	11.6x
16	2.5	28.3	11.3x

Single core characteristics:

- 13 x 14 x 14 mesh (2548 voxels per sub-domain)
- 3900 particles per voxel (per species)
- 5 species (Electron, Hydrogen, Helium, Krypton, Xenon)
- Problem uses essentially all available RAM (3.2 GB per core)

Scaled to entire machine

643 billion particles and 33 million voxels

Modeled Performance

System Size 1 CU (180 Triblades)	6 CU	12 CU	18 CU	
	(180 Triblades)	(1080 Triblades)	(2160 Triblades)	(3240 Triblades)
Average Iteration Time (Hybrid)	0.437 seconds	0.439 seconds	0.439 seconds	0.439 seconds
Average Iteration Time (Opteron)	4.85 seconds	4.86 seconds	4.86 seconds	4.86 seconds
Processing Rate (Hybrid)	20.3 Tflop/s	121.9 Tflop/s	243.8 Tflop/s	365.7 Tflop/s
Processing Rate (Opteron)	1.82 Tflop/s	10.9 Tflop/s	21.9 Tflop/s	32.8 Tflop/s
Performance Advantage	11.2x	11.2x	11.1x	11.1x

❖ Same input deck as for measured results

Conclusions

VPIC was already highly optimized before we started

- Data structures and algorithms tuned for short-vector operations
- Designed to minimize data movement

Development of MP Relay strategy greatly simplified adaptation

- Control logic of main process essentially unchanged
- Maintains portability to traditional clusters

Required development of some new low-level capabilities

- Software cache for Field data
- Thread dispatch for data parallelism

Overlays are necessary to achieve full potential

- Allow sort and Field solve to be accelerated
- Unit-physics can be done this way: What about multi-physics problems?

VPIC Laser Plasma Interaction (LPI)

Time = 5785.0

Bowing and self-focusing of electron plasma waves

